

1

Diploma in

IT, Networking and Cloud

Elective Module 3

Web Development using
JS Frameworks

Lab Manual

Disclaimer: The content is curated for educational purposes only.
© Edunet Foundation. All rights reserved.

2

Table of Contents
Learning Outcome .. 5

After completing this module, the student should be able to understand how to install
Angular Js. ... 5

Activity 1 ... 6

Aim: Installing Angular Js. .. 6

Activity 2 ... 15

Aim: Create an Angular application which add, multiply, divide the two input numbers
from textbox. ... 15

Learning Outcome .. 19

After completing this module, the student should be Able to develop the real time
scenarios based on Node JS applications. .. 19

Activity 1 ... 20

Aim: Create an Angular application which can validate the email accepted from user
 .. 20

Activity 2 ... 28

Aim: Create an Angular application with form validation .. 28

Learning outcome: Able to develop the real time scenarios based on Node JS
applications. .. 28

Learning Outcome .. 37

Activity 1 ... 38

Aim: Create an Angular application which can create Captcha. 38

Activity 2 ... 46

Aim: Create an Angular application which can create Captcha. 46

3

Learning Outcome .. 50

After completing this module, the student should be able to understand how to install
Angular Js. ... 50

1. Create an Angular application using Node JS with complete templating system. ... 50

List of Hardware/Software requirements: .. 51

Install Angular CLI .. 51

Create Angular 2 Application ... 51

Run Angular Application .. 52

Angular 2 Components .. 52

HTML Template ... 52

Generate Angular Component using Angular CLI ... 52

Bootstrapping Component .. 53

Output/Results snippet: .. 56

Activity 2 ... 57

Aim: Create a basic Program with Node .. 57

Learning Outcome .. 68

After completing this module, the student should be Able to develop the real time
scenarios based on Node JS applications. .. 68

Activity 1 ... 69

Aim: Create Module (Function) & export, import using Node 69

Activity 2 ... 71

Aim: Create a Web Application using Express JS .. 71

Activity 3 ... 75

4

Aim: Create RestAPI using express JS .. 75

Learning Outcome .. 80

After completing this module, the student should be Able to develop the real time
scenarios based on Node JS applications. .. 80

Activity 1 ... 81

List of Hardware/Software requirements: .. 81

Output/Results snippet: .. 86

Learning Outcome .. 90

Activity 1 ... 91

Aim: Create application with CRUD operations using Mongo DB 91

Node JS and MongoDB CRUD Operations .. 91

1. Node JS with MongoDB CRUD Operations: MongoDB and Node.js Setup . 91

2. Node JS with MongoDB CRUD Operations: Create a New Node.js Project 91

3. Node JS with MongoDB CRUD Operations: Inserting a Record into GridDB
 .. 92

4. Node JS with MongoDB CRUD Operations: Retrieving from MongoDB 94

5. Node JS with MongoDB CRUD Operations: Updating MongoDB Documents
 .. 95

6. Node JS and MongoDB CRUD Operations: Deleting MongoDB Documents
 .. 96

MongoDB Installation ... 97

Node.js MongoDB Demo .. 101

List of Hardware/Software requirements: .. 121

Output/Results snippet: .. 132

5

Learning Outcome
After completing this module, the student should be able to understand how to install
Angular Js.

To meet the learning outcome, a student has to complete the following activities

1. Installation of node js and angular js (1.5 Hrs)

2. Creating a Angular Js Application (3 Hrs)

6

Activity 1
Aim: Installing Angular Js.

Learning outcome: Able to understand basic how to install angular js.

Duration: 1.5 hour

List of Hardware/Software requirements:

1. Operating system - Windows 10/11 or Linux

2. Command prompt

3. Internet connectivity

Code/Program/Procedure (with comments):

Step 1: Install Node.js

Angular bases its build environments on Node.js, and many of its features depend
on NPM packages. Conveniently, the Node Package Manager (NPM) client is part of
the default Node.js package.

To install Node.js:

1. Visit the official Node.js page and download the latest Node.js Windows
Installer.

7

2. Access the download location and double-click the Windows Installer Package.
3. Select Next on the initial Node.js Setup Wizard screen.

4. Accept the License Agreement and click Next.

8

5. Define the destination folder for the installation and select Next.

6. You can customize how to install available features. Make sure that the npm
package manager is part of the installation bundle. Click Next to proceed.

9

7. Check the box if you would like to install tools for compiling native modules
automatically. They are not mandatory and require an additional 3 GB of space.
Select Next to continue.

10

8. Click Install to start the installation process.

9. Once the installation is complete, select Finish to exit the Setup Wizard.

11

10. Access the Windows Command Prompt (or PowerShell) and check the Node.js
version:
node -v
The system confirms that Node.js v14.17.0 is installed.

11. To verify the NPM version, use the following command:
npm -v
The output shows you have installed NPM version 8.3.2.

Step 2: Install Angular CLI

The Angular command-line interface (CLI) tool allows you to initialize, develop, and
manage your Angular applications. You can use the NPM package manager to install
the Angular CLI.

1. Access the Windows Command Prompt and enter the following command:

12

2. Once all packages have been added, verify the installed version:

ng version

The Angular CLI version is 14.0.1

13

Step 3: Create Angular Project

1. Use the Angular CLI to start a new Angular project. It this example, the name of the
project is kitchen-sink. You are free to use the name of your choice for your project
name. Type the following command in your Windows Command Prompt:

ng new myfirst-project

Before proceeding, you can customize the application. Define if you would like to use
Angular routing and choose a stylesheet format. These settings can be edited at a later
point.

The system takes a few moments to create the project. Once it finishes, you see the
“Packages installed successfully” message.

2. Access your project’s root folder (myfirst-project in this example) from the Windows
Command Prompt and enter the following command:

14

ng serve

The system proceeds to generate the environment for your Angular application.

Keep the Windows Command Prompt running. You can continue using the terminal,
and the changes you make will be reflected in the application within your browser.

3. Use any browser to access your Angular local development server on localhost:4200:

http://localhost:4200/

You can now start creating new Angular components.

15

Activity 2
Aim: Create an Angular application which add, multiply, divide the two input numbers
from textbox.

Learning outcome: Able to understand how to create an angular application.

Duration: 3 hours

List of Hardware/Software requirements:

1. Operating System – Windows 10/11 or Linux

2. Command Prompt/Power Shell

3. Internet Connectivity, Browser (Chrome or Edge)

4. Text Editor – Notepad / IDE – Visual Studio Code/Any IDE

5. NodeJS, Angular CLI

Code/Program/Procedure (with comments):

1. Open Visual Studio.
2. Let's create a simple AngularJS web application step by step and understand the

basic building blocks of AngularJS.
3. First, create an HTML document with <head> and <body> elements, as show

below.

Example: HTML Template

<!DOCTYPE html>

<html>

 <head>

 </head>

<body>

16

</html>

4. Include angular.js file in the head section (you have learned how to download angular
library in the previous activity). You can take a reference from the CDN also.
Example: Include AngularJS Library.

<!DOCTYPE html>

<html>

<head>

 <title>AngularApp</title>

 <script src= " https://cdnjs.cloudflare.com/ajax/libs/angular.js/1.8.3/angular.js
"></script>

</head>

<body>

</body>

</html>

5. Here, we will be creating a simple calculator application which will add, subtract,
multiply, divide two numbers and display the result.

<!Doctype html>

<html lang="en">

<head>

 <meta charset="utf-8">

 <title>AngularApp</title>

 <base href="/">

 <meta name="viewport" content="width=device-width, initial-scale=1">

17

 <link rel="icon" type="image/x-icon" href="favicon.ico">

 <script src=
"https://cdnjs.cloudflare.com/ajax/libs/angular.js/1.8.3/angular.js"></script>

</head>

<body ng-app>

 <h1>First AngularJS Application</h1>

 Enter Numbers to Add:

 <input type="number" ng-model="Num1" /> + <input type="number" ng-
model="Num2" /> = {{Num1 + Num2}}

 Enter Numbers to Subtract:

 <input type="number" ng-model="Num3" /> - <input type="number" ng-
model="Num4" /> = {{Num3 - Num4}}

 Enter Numbers to Multiply:

 <input type="number" ng-model="Num5" /> x <input type="number" ng-
model="Num6" /> = {{Num5 * Num6}}

 Enter Numbers to Divide:

 <input type="number" ng-model="Num7" /> / <input type="number" ng-
model="Num8" /> = {{Num7 / Num8}}

</body>

</html>

The above example is looks like HTML code with some strange attributes and braces
such as ng-app, ng-model, and {{ }}. These built-in attributes in AngularJS are called
directives.

The expressions are written inside the {{ expression }}.

18

ng-model directive helps to bind the value in html control. the above solution we use
"Num1" it will contain the first input value."Num2" contain the second input value.

ng-app directive defines the angular js application.

6. Save as index.html

Output/Results snippet:

User will enter two numbers in two separate textboxes and the result will be
displayed immediately, as shown below.

19

References:

● https://dzone.com/articles/multiplication-of-two-numbers-using-angular-js

Learning Outcome

After completing this module, the student should be Able to develop the real time
scenarios based on Node JS applications.

To meet the learning outcome, a student has to complete the following activities

1. Create an Angular application which can validate the email accepted from user

2. Create an Angular application with form validation

20

Activity 1
Aim: Create an Angular application which can validate the email accepted from user

Learning outcome: Able to develop the real time scenarios based on Node JS
applications.

Duration: 3 Hour

List of Hardware/Software requirements:

6. Operating System – Windows 10/11 or Linux

7. Command Prompt/Power Shell

8. Internet Connectivity, Browser (Chrome or Edge)

9. Text Editor – Notepad / IDE – Visual Studio Code/Any IDE

10. NodeJS, Angular CLI

Code/Program/Procedure (with comments):

Step 1: To verify the node, npm version, use the following command:

Step 2: Installing Angular CLI

The Angular command-line interface (CLI) tool allows you to initialize, develop, and
manage your Angular applications. You can use the NPM package manager to install the
Angular CLI.

Access the Windows Command Prompt and enter the following command:

First step, where we’ll have to install latest version of Angular CLI 14.0.1

21

$ npm install -g @angular/cli

Step 3: Creating your Angular 12 Project

• In this second step, we will use Angular CLI to start our Angular Project
• Go to CMD or Terminal and use this command:

ng new Validation

22

Once all packages have been added.

• This CLI will ask you “whether you would like to add Angular routing” Say Yes.
• It will ask “which stylesheet format you would like to use”. Choose CSS.
• Now your project is ready Angular CLI will generate required files and folders along

with NPM packages and routing too.

23

Step 4: Import FormsModule

If you want to create form in angular app then you need to import FormsModule from
@angular/forms library. so let's add following code to app.module.ts file.

src/app/app.module.ts

Step 5: Form with ngModel

In this step, we will write code of html form with ngModel. so, add following code to
app.component.html file

24

In this solution, you need to just install bootstrap on your angular 12 and import css file to
style.css file. this is only for css importing. so, you can run command bellow:

npm install bootstrap --save

You need to import your bootstrap css on style.css file as like bellow:

src/style.css

Step 6: updated Ts File

In ts file. we will write submit() and get all input fields values. so let's add following code
to app.component.ts file.

src/app/app.component.ts

25

Step 7: Run your application

The system proceeds to generate the environment for your Angular application.

Keep the Windows Command Prompt running. You can continue using the terminal, and
the changes you make will be reflected in the application within your browser.

Use any browser to access your Angular local development server on localhost:4200:

26

Output/Results snippet:

27

Project Directory:

References:

● https://www.itsolutionstuff.com/post/angular-12-reactive-forms-validation-
exampleexample.html

.

28

Activity 2
Aim: Create an Angular application with form validation

Learning outcome: Able to develop the real time scenarios based on Node JS
applications.

Duration: 3 Hour

List of Hardware/Software requirements:

1. Operating System – Windows 10/11 or Linux

2. Command Prompt/Power Shell

3. Internet Connectivity, Browser (Chrome or Edge)

4. Text Editor – Notepad / IDE – Visual Studio Code/Any IDE

5. NodeJS, Angular CLI

Code/Program/Procedure (with comments):

Step 1: To verify the node, npm version, use the following command:

Step 2: Installing Angular CLI

The Angular command-line interface (CLI) tool allows you to initialize, develop, and
manage your Angular applications. You can use the NPM package manager to install the
Angular CLI.

Access the Windows Command Prompt and enter the following command:

29

First step, where we’ll have to install latest version of Angular CLI 14.0.1

$ npm install -g @angular/cli

Step 3: Creating your Angular 12 Project

• In this second step, we will use Angular CLI to start our Angular Project
• Go to CMD or Terminal and use this command:

ng new Validation

30

Once all packages have been added.

• This CLI will ask you “whether you would like to add Angular routing” Say Yes.
• It will ask “which stylesheet format you would like to use”. Choose CSS.
• Now your project is ready Angular CLI will generate required files and folders along

with NPM packages and routing too.

Step 4: Import FormsModule

If you want to create form in angular app then you need to import FormsModule from
@angular/forms library. so let's add following code to app.module.ts file.

31

src/app/app.module.ts

Step 5: Form with ngModel

In this step, we will write code of html form with ngModel. so, add following code to
app.component.html file

32

In this solution, you need to just install bootstrap on your angular 12 and import css file to
style.css file. this is only for css importing. so, you can run command bellow:

npm install bootstrap --save

You need to import your bootstrap css on style.css file as like bellow:

src/style.css

33

Step 6: updated Ts File

In ts file. we will write submit() and get all input fields values. so let's add following code
to app.component.ts file.

src/app/app.component.ts

Step 7: Run your application

The system proceeds to generate the environment for your Angular application.

Keep the Windows Command Prompt running. You can continue using the terminal, and
the changes you make will be reflected in the application within your browser.

34

Use any browser to access your Angular local development server on localhost:4200:

Output/Results snippet:

35

36

Project Directory:

References:

● https://www.itsolutionstuff.com/post/angular-12-reactive-forms-validation-
exampleexample.html

37

Learning Outcome

Able to develop the real time scenarios based on Node JS applications.

1. Create an Angular application which can create Captcha.
2. Create Responsive Web Application using Angular.

38

Activity 1
Aim: Create an Angular application which can create Captcha.

Learning outcome: Able to develop the real time scenarios based on Node JS
applications.

Duration: 5 hour

List of Hardware/Software requirements:

1. Git
2. Node.js and npm
3. Angular CLI
4. IDE (e.g. Visual Studio Code)

Code/Program/Procedure (with comments):

Create the Angular application

1. Let's create the application with the Angular base structure using the @angular/cli
with the route file and the SCSS style format.

ng new angular-recaptcha-v2

? Would you like to add Angular routing? Yes

? Which stylesheet format would you like to use? SCSS [https://sass-
lang.com/documentation/syntax#scss]

CREATE angular-recaptcha-v2/README.md (1064 bytes)

CREATE angular-recaptcha-v2/.editorconfig (274 bytes)

CREATE angular-recaptcha-v2/.gitignore (604 bytes)

CREATE angular-recaptcha-v2/angular.json (3291 bytes)

CREATE angular-recaptcha-v2/package.json (1082 bytes)

CREATE angular-recaptcha-v2/tsconfig.json (783 bytes)

39

CREATE angular-recaptcha-v2/.browserslistrc (703 bytes)

CREATE angular-recaptcha-v2/karma.conf.js (1437 bytes)

CREATE angular-recaptcha-v2/tsconfig.app.json (287 bytes)

CREATE angular-recaptcha-v2/tsconfig.spec.json (333 bytes)

CREATE angular-recaptcha-v2/src/favicon.ico (948 bytes)

CREATE angular-recaptcha-v2/src/index.html (304 bytes)

CREATE angular-recaptcha-v2/src/main.ts (372 bytes)

CREATE angular-recaptcha-v2/src/polyfills.ts (2820 bytes)

CREATE angular-recaptcha-v2/src/styles.scss (80 bytes)

CREATE angular-recaptcha-v2/src/test.ts (788 bytes)

CREATE angular-recaptcha-v2/src/assets/.gitkeep (0 bytes)

CREATE angular-recaptcha-v2/src/environments/environment.prod.ts (51 bytes)

CREATE angular-recaptcha-v2/src/environments/environment.ts (658 bytes)

CREATE angular-recaptcha-v2/src/app/app-routing.module.ts (245 bytes)

CREATE angular-recaptcha-v2/src/app/app.module.ts (393 bytes)

CREATE angular-recaptcha-v2/src/app/app.component.scss (0 bytes)

CREATE angular-recaptcha-v2/src/app/app.component.html (24617 bytes)

CREATE angular-recaptcha-v2/src/app/app.component.spec.ts (1115 bytes)

CREATE angular-recaptcha-v2/src/app/app.component.ts (225 bytes)

✔ Packages installed successfully.

2. Install and configure the Bootstrap CSS framework. Do steps 2 and 3 of the post
Adding the Bootstrap CSS framework to an Angular application.

40

3. Configure the siteKey variable with the Google reCAPTCHA key in the
src/environments/environment.ts and src/environments/environment.prod.ts files as
below.

recaptcha: {

 siteKey: '6LfKNi0cAAAAACeYwFRY9_d_qjGhpiwYUo5gNW5-',

},

2. Install the ng-recaptcha library.

npm install ng-recaptcha

3. Import the FormsModule, RecaptchaFormsModule, RecaptchaModule modules.
Configure the Google reCAPTCHA key. Change the app.module.ts file and add the
lines as below.

import { FormsModule } from '@angular/forms';

import { RECAPTCHA_SETTINGS, RecaptchaFormsModule, RecaptchaModule,
RecaptchaSettings } from 'ng-recaptcha';

import { environment } from '../environments/environment';

imports: [

 BrowserModule,

 FormsModule,

 AppRoutingModule,

 RecaptchaModule,

 RecaptchaFormsModule,

],

providers: [

 {

41

 provide: RECAPTCHA_SETTINGS,

 useValue: {

 siteKey: environment.recaptcha.siteKey,

 } as RecaptchaSettings,

 },

],

4. Remove the contents of the AppComponent class from the
src/app/app.component.ts file. Import the NgForm component and create the send
method as below.

import { Component } from '@angular/core';

import { NgForm } from '@angular/forms';

@Component({

 selector: 'app-root',

 templateUrl: './app.component.html',

 styleUrls: ['./app.component.scss'],

})

export class AppComponent {

 token: string|undefined;

 constructor() {

 this.token = undefined;

 }

42

 public send(form: NgForm): void {

 if (form.invalid) {

 for (const control of Object.keys(form.controls)) {

 form.controls[control].markAsTouched();

 }

 return;

 }

 console.debug(`Token [${this.token}] generated`);

 }

}

5. Remove the contents of the src/app/app.component.html file. Add the re-captcha
component as below.

<div class="container-fluid py-3">

 <h1>Angular reCAPTCHA v2</h1>

 <form #form="ngForm">

 <div class="row mt-3">

 <div class="col-sm-12 mb-2">

 <re-captcha id="recaptcha" name="recaptcha" #recaptcha="ngModel"
[(ngModel)]="token" required [class.is-invalid]="recaptcha.invalid && (recaptcha.dirty ||
recaptcha.touched)"></re-captcha>

43

 <div *ngIf="recaptcha.invalid && (recaptcha.dirty || recaptcha.touched)"
class="invalid-feedback">

 <div *ngIf="recaptcha.errors?.['required']">This field is required.</div>

 </div>

 </div>

 </div>

 <div class="row">

 <div class="col-sm-12 mb-2">

 <button type="button" class="btn btn-sm btn-primary"
(click)="send(form)">Send</button>

 </div>

 </div>

 </form>

</div>

6. Add the style in the src/app/app.component.scss file as below.

re-captcha.is-invalid > div {

 border: 1px solid #dc3545 !important;

 border-radius: 0.2rem;

}

7. Run the application with the command below.

npm start

> angular-recaptcha-v2@0.0.0 start

> ng serve

44

✔ Browser application bundle generation complete.

Initial Chunk Files | Names | Size

vendor.js | vendor | 2.73 MB

styles.css | styles | 266.58 kB

polyfills.js | polyfills | 128.52 kB

scripts.js | scripts | 76.67 kB

main.js | main | 15.54 kB

runtime.js | runtime | 6.64 kB

| Initial Total | 3.21 MB

Build at: 2021-08-28T12:35:07.166Z - Hash: 0612b9d911a0acdf2b42 - Time: 10102ms

** Angular Live Development Server is listening on localhost:4200, open your browser
on http://localhost:4200/ **

✔ Compiled successfully.

8. Ready! Access the URL http://localhost:4200/ and check if the application is working.
See the application working on GitHub Pages and Stackblitz.

45

Output/Results snippet:

References:

• https://dev.to/rodrigokamada/adding-the-google-recaptcha-v2-to-an-angular-
application-1o7o

• https://github.com/rodrigokamada/angular-recaptcha-v2.

46

Activity 2
Aim: Create an Angular application which can create Captcha.

Learning outcome: Able to develop the real time scenarios based on Node JS
applications.

Duration: 5 hours

List of Hardware/Software requirements:

1. Git
2. Node.js and npm
3. Angular CLI
4. IDE (e.g. Visual Studio Code)

Code/Program/Procedure (with comments)

<!DOCTYPE html>

<html lang="en">

<head>

<meta charset="utf-8">

<meta name="viewport"

 content="width=device-width,

 initial-scale=1">

<style>

* {

box-sizing: border-box;

}

47

/* Style the top navigation bar */

.topnav {

overflow: hidden;

background-color: #32CD32;

}

.topnav a {

float: left;

display: block;

color: #228B22;

text-align: center;

padding: 14px 16px;

text-decoration: none;

}

/* Change color on hover */

.topnav a:hover {

background-color: #C0C0C0;

color: black;

}

48

@media screen and (max-width: 800px) {

.topnav a {

 float: none;

 width: 100%;

}

}

</style>

</head>

<body>

<h2>Responsive navigation </h2>

<p>Resize the browser window to see the effect:

When the screen is less than 800px,

the navigation will be displayed vertically

rather than of horizontally.</p>

<div class="topnav">

Link1

Link2

Link3

</div>

</body>

</html>

49

Output/Results snippet:

References:

• https://www.geeksforgeeks.org/responsive-page-in-angularjs/

50

Learning Outcome

After completing this module, the student should be able to understand how to install
Angular Js.

To meet the learning outcome, a student has to complete the following activities

1. Create an Angular application using Node JS with complete templating system.

2. Create a basic Program with Node.

51

Activity 1
Aim: Create an Angular application using Node JS with complete templating system

Learning outcome: Able to develop the real time scenarios based on Node JS
applications.

Duration: 2 hours

List of Hardware/Software requirements:

1. Laptop/Computer with Windows OS / Linux OS - Ubuntu 18.04 LTS
2. NodeJS, ExpressJS, VS Code installed

Code/Program/Procedure (with comments):

Install Angular CLI

Angular provides many libraries and packages for application development. You can
install libraries required for your application using Angular CLI (Command Line
Interface). Angular CLI is also used to generate, build, run, and deploy Angular
application.

To install the Angular CLI globally using NPM, open a terminal/command window, and
enter the following command:

npm install -g @angular/cli@latest

Create Angular 2 Application

The following creates a new angular application named "FirstAngularApp" in the
AngularApps folder.

D:\AngularApps> ng new FirstAngularApp

To open this project in VS Code, navigate to the project folder in the terminal/command
window and type code.

D:\AngularApps\FirstAngularApp\>code .

52

Run Angular Application

Open the terminal in VS Code from menu Terminal -> New Terminal, and type ng serve
-o command and press enter

Angular 2 Components

Angular Component = HTML Template + Component Class + Component Metadata

HTML Template

HTML template is nothing but a regular HTML code with additional Angular specific
syntax to communicate with the component class.

Generate Angular Component using Angular CLI

Use the following CLI command to generate a component.

ng generate component greet

Now, open greet.component.ts file in VS Code, and you will see the following code.

import { Component, OnInit } from '@angular/core';

@Component({

 selector: 'app-greet',

 templateUrl: './greet.component.html',

 styleUrls: ['./greet.component.css']

})

export class GreetComponent implements OnInit {

 constructor() { }

 ngOnInit(): void {

53

 }}

Now, let's add a property and method in the component class.

export class GreetComponent implements OnInit {

 constructor() { }

 ngOnInit(): void {

 }

 name: string = "Steve";

 greet(): void {

 alert("Hello " + this.name);

 };

}

Open greet.component.html file, remove existing code and add the following code.

<div>

 Enter Your Name: <input type="text" value={{name}} />

 <button (click)="greet()">Greet Me!</button>

</div>

In the above HTML template, we used name property in the {{ }} interpolation to display
its value and greet() function as click event.

Bootstrapping Component

Now, it's time to load our component, but before that, we need to host our application
and load the root component. This process is called bootstrapping.

We will load our greet component into the root component in two steps.

54

1. Declare a component in the root module.

import { BrowserModule } from '@angular/platform-browser';

import { NgModule } from '@angular/core';

import { AppRoutingModule } from './app-routing.module';

import { AppComponent } from './app.component';

import { GreetComponent } from './greet/greet.component'; //import GreetComponent

@NgModule({

 declarations: [

 AppComponent,

 GreetComponent // <- include GreetComponent in declarations

],

 imports: [

 BrowserModule,

 AppRoutingModule

],

 providers: [],

 bootstrap: [AppComponent]

})

55

export class AppModule { }

2. Add component tag in the root HTML template.

<div>
 <app-greet></app-greet>
</div>

Run the app by executing npm start command in the terminal of VS Code. After
successful compilation, open the browser and enter http://localhost:4200.

We can also create a single component file greet.component.ts if the HTML code of a
component is less. Use the template parameter in the @Component decorator to include
HTML of the component. The following greet component gives the same result.

import { Component } from '@angular/core';

@Component({
 selector: "app-greet",
 template: `<div>
 Enter Your Name: <input type="text" value={{name}} />

 <button (click)="greet()">Greet Me!</button>
 </div>`
})

export class GreetComponent {

 name: string = "Steve";
 greet(): void {
 alert("Hello " + this.name);
 };
}

56

Output/Results snippet:

References:

• https://www.tutorialsteacher.com/angular/create-angular-application

57

Activity 2
Aim: Create a basic Program with Node

Learning outcome: Able to develop the real time scenarios based on Node JS
applications.

Duration: 5 hours

List of Hardware/Software requirements:

1. Git
2. Node.js and npm
3. Angular CLI
4. IDE (e.g., Visual Studio Code

Code/Program/Procedure (with comments):

Let's get started by creating the simplest Node.js application, "Hello World".

Create an empty folder called "hello", navigate into and open VS Code:

mkdir hello

cd hello

code .

From the File Explorer toolbar, press the New File button

58

And name the file app.js:

By using the .js file extension, VS Code interprets this file as JavaScript and will
evaluate the contents with the JavaScript language service. Refer to the VS Code
JavaScript language topic to learn more about JavaScript support.

Create a simple string variable in app.js and send the contents of the string to the
console:

var msg = 'Hello World';

console.log(msg);

59

Note that when you typed console. IntelliSense on the console object was automatically
presented to you.

Also notice that VS Code knows that msg is a string based on the initialization to 'Hello
World'. If you type msg. you'll see IntelliSense showing all of the string functions
available on msg.

After experimenting with IntelliSense, revert any extra changes from the source code
example above and save the file (Ctrl+S).

Running Hello World#

60

It's simple to run app.js with Node.js. From a terminal, just type:

node app.js

You should see "Hello World" output to the terminal and then Node.js returns.

Integrated Terminal#

VS Code has an integrated terminal which you can use to run shell commands. You can
run Node.js directly from there and avoid switching out of VS Code while running
command-line tools.

View > Terminal (Ctrl+` with the backtick character) will open the integrated terminal
and you can run node app.js there:

For this walkthrough, you can use either an external terminal or the VS Code integrated
terminal for running the command-line tools.

Debugging Hello World#

As mentioned in the introduction, VS Code ships with a debugger for Node.js
applications. Let's try debugging our simple Hello World application.

To set a breakpoint in app.js, put the editor cursor on the first line and press F9 or click
in the editor left gutter next to the line numbers. A red circle will appear in the gutter.

61

To start debugging, select the Run View in the Activity Bar:

You can now click Debug toolbar green arrow or press F5 to launch and debug "Hello
World". Your breakpoint will be hit and you can view and step through the simple
application. Notice that VS Code displays a different colored Status Bar to indicate it is
in Debug mode and the DEBUG CONSOLE is displayed.

62

Now that you've seen VS Code in action with "Hello World", the next section shows
using VS Code with a full-stack Node.js web app.

An Express application#

Express is a very popular application framework for building and running Node.js
applications. You can scaffold (create) a new Express application using the Express
Generator tool. The Express Generator is shipped as an npm module and installed by
using the npm command-line tool npm.

Install the Express Generator by running the following from a terminal:

npm install -g express-generator

The -g switch installs the Express Generator globally on your machine so you can run it
from anywhere.

We can now scaffold a new Express application called myExpressApp by running:

express myExpressApp --view pug

This creates a new folder called myExpressApp with the contents of your application.
The --view pug parameters tell the generator to use the pug template engine.

To install all of the application's dependencies (again shipped as npm modules), go to
the new folder and execute npm install:

cd myExpressApp

npm install

At this point, we should test that our application runs. The generated Express
application has a package.json file which includes a start script to run node ./bin/www.
This will start the Node.js application running.

From a terminal in the Express application folder, run:

npm start

The Node.js web server will start and you can browse to http://localhost:3000 to see the
running application.

63

Your first Node Express App

Great code editing#

Close the browser and from a terminal in the myExpressApp folder, stop the Node.js
server by pressing CTRL+C.

Now launch VS Code:

code .

The Node.js and Express documentation does a great job explaining how to build rich
applications using the platform and framework. Visual Studio Code will make you more
productive in developing these types of applications by providing great code editing and
navigation experiences.

64

Open the file app.js and hover over the Node.js global object __dirname. Notice how VS
Code understands that __dirname is a string. Even more interesting, you can get full
IntelliSense against the Node.js framework. For example, you can require http and get
full IntelliSense against the http class as you type in Visual Studio Code.

VS Code uses TypeScript type declaration (typings) files (for example node.d.ts) to
provide metadata to VS Code about the JavaScript based frameworks you are
consuming in your application. Type declaration files are written in TypeScript so they
can express the data types of parameters and functions, allowing VS Code to provide a
rich IntelliSense experience. Thanks to a feature called Automatic Type Acquisition, you
do not have to worry about downloading these type declaration files, VS Code will install
them automatically for you.

You can also write code that references modules in other files. For example, in app.js
we require the ./routes/index module, which exports an Express.Router class. If you
bring up IntelliSense on index, you can see the shape of the Router class.

65

Debug your Express app#

You will need to create a debugger configuration file launch.json for your Express
application. Click on the Run icon in the Activity Bar and then the Configure gear icon at
the top of the Run view to create a default launch.json file. Select the Node.js
environment by ensuring that the type property in configurations is set to "node". When
the file is first created, VS Code will look in package.json for a start script and will use
that value as the program (which in this case is "${workspaceFolder}\\bin\\www) for the
Launch Program configuration.

{

 "version": "0.2.0",

 "configurations": [

 {

66

 "type": "node",

 "request": "launch",

 "name": "Launch Program",

 "program": "${workspaceFolder}\\bin\\www"

 }

]

}

Save the new file and make sure Launch Program is selected in the configuration
dropdown at the top of the Run view. Open app.js and set a breakpoint near the top of
the file where the Express app object is created by clicking in the gutter to the left of the
line number. Press F5 to start debugging the application. VS Code will start the server
in a new terminal and hit the breakpoint we set. From there you can inspect variables,
create watches, and step through your code.

67

Output/Results snippet:

References:

1. https://code.visualstudio.com/docs/nodejs/nodejs-tutorial#_great-code-editing

68

Learning Outcome
After completing this module, the student should be Able to develop the real time
scenarios based on Node JS applications.

To meet the learning outcome, a student has to complete the following activities

3. Create Module (Function) & export, import using Node

4. Create a Web Application using Express JS

5. Create RestAPI using express JS

69

Activity 1
Aim: Create Module (Function) & export, import using Node

Learning outcome:Able to develop the real time scenarios based on Node JS
applications.

Duration: 3 Hour

List of Hardware/Software requirements:

1. Operating System – Windows 10/11 or Linux

2. Command Prompt/Power Shell

3. Text Editor – Notepad / IDE – Visual Studio Code/Any IDE

4. NodeJS

Code/Program/Procedure (with comments):

1. Creating a Module: Modules are created in Node.js are JavaScript files. Every time
a new file with .js extension is created, it becomes a module.

2. Create a file func.js

function add (x, y) {
 return x + y;
}
function subtract (x, y) {
 return x - y;
}
// Adding the code below to allow importing
// the functions in other files
module.exports = { add }

3. Create a file main.js which will import the func.js module.

70

// Importing the func.js module
// The ./ says that the func module is in the same directory as the main.js file
const f = require('./func');
// Require returns an object with add() and stores it in the f variable
// which is used to invoke the required
const result = f.add(10, 5);
console.log ('The result is:', result);

4. Run the code using node main.js

References:

• https://www.geeksforgeeks.org/import-and-export-in-node-js/?ref=rp
• https://javascript.plainenglish.io/create-a-single-page-website-using-node-js-and-

express-js-a0b53e396e4f

71

Activity 2
Aim: Create a Web Application using Express JS

Learning outcome: Able to develop the real time scenarios based on Node JS
applications.

Duration: 4 Hour

List of Hardware/Software requirements:

1. Operating System – Windows 10/11 or Linux

2. Command Prompt/Power Shell

3. Text Editor – Notepad / IDE – Visual Studio Code/Any IDE

4. NodeJS

5. Express JS

Code/Program/Procedure (with comments):

1. Make a file app.js using Visual Studio Code.

var express = require('express');
var app = express();

// define routes here..

var server = app.listen(5000, function () {
console.log('Node server is running..');
});

2. Open terminal in that specific folder to install all modules as mentioned below

72

3. Now we can see all required modules are installed.

4. Now run the app using node app.js

5. Now app is running on local system on port address 5000 and the link is
localhost:5000

6. check link on browser

73

7. We are not able to see any output because routes are not defined yet. Modify the

app.js with following code:

var express = require('express');
var app = express();

app.get('/', function (req, res) {
res.send('<html><body><h1>Hello World</h1></body></html>');
});

app.post('/submit-data', function (req, res) {
res.send('POST Request');
});

app.put('/update-data', function (req, res) {
res.send('PUT Request');
});

app.delete('/delete-data', function (req, res) {
res.send('DELETE Request');
});

var server = app.listen(5000, function () {
console.log('Node server is running..');
});

8. Now run the file again using node app.js command.

74

9. Server running on the same port address with the message “Hello World”

Output/Results snippet:

References:

• https://www.tutorialsteacher.com/nodejs/expressjs-web-application

75

Activity 3
Aim: Create RestAPI using express JS

Learning outcome:Able to develop the real time scenarios based on Node JS
applications.

Duration: 4 Hour

List of Hardware/Software requirements:

1. Operating System – Windows 10/11 or Linux

2. Command Prompt/Power Shell

3. Text Editor – Notepad / IDE – Visual Studio Code/Any IDE

4. NodeJS

5. Express JS

Code/Program/Procedure (with comments):

1. Make a file name index.js using visual studio code.

import express from 'express';
import bodyParser from 'body-parser';
import users Routes from './routes/users.js'

constapp=express();
constPORT=5000;
app.use(bodyParser.json());
app.use('/users', usersRoutes);

app.get('/', (req, res)=>res.send('This is Homepage, kindly refer json file here
http://localhost:5000/users'));

76

app.listen(PORT, (req, res)=>console.log(`Server is Running on port
http://localhost:${PORT}`));

2. Install all required module with the help of npm install express

3. Make routes folder and create users.js in the same folder.

import express from'express'; // Web Framework for nodejs
import { v4 as uuidv4 } from'uuid'; //Get unique id every time
const router =express.Router(); //using express for routing

let users = [
 {
 "firstName": "John",
 "lastName": "Doe",
 "age": 25,
 "id": "fcb4efa5-608d-4d91-aed3-33af404928ae"
 },
 {
 "firstName": "Johny",
 "lastName": "Doe",
 "age": 25,
 "id": "2fb6fed6-43f3-4ee6-ab04-2bd3782c1886"
 },
 {
 "firstName": "Jason",
 "lastName": "Dew",

77

 "age": 30,
 "id": "a4f12aa0-8fd5-473d-9834-aa98a2bdd84c"
 },
 {
 "firstName": "BSon",
 "lastName": "DB",
 "age": 40,
 "id": "179c592c-1d4d-451c-808c-e72749e9c880"
 }
] //variable used to store data

// GET METHOD i.e. Read request can done from browser
router.get('/', (req, res)=>{
 // console.log(users);
 res.send(users);
});

// POST METHOD i.e. CREATE request can be done from POSTMAN/THUNDER CLIENT
router.post('/', (req, res)=>{
 // console.log('POST ROUTE Reached');
 // console.log(req.body);

 constuser=req.body; //when post request implemented, data stored in body and stored
in variable i.e. 'user'
 constuserID=uuidv4(); // For unique id⇨ '9b1deb4d-3b7d-4bad-9bdd-2b0d7b3dcb6d'
 constuserWithID= { ...user, id: userID } //Spread Operator
 users.push(userWithID); //With Push Function it will add data in "users" array

 // res.send('POST ROUTE Reached');
 res.send(`User with the name ${user.firstName} added to the database.`); //
Confirmation message on client side
});

// GET METHOD via passing id, Read request can done from browser
router.get('/:id', (req, res)=>{
 // console.log(req.params);

78

 // res.send('THE GET ID ROUTE');
 // res.send(req.params);
 const { id } =req.params; //id will store in params and stored in variable
 constfoundUser=users.find((user)=>user.id ==id); //using find filter to fetch exact same
id
 res.send(foundUser);
});

// DELETE METHOD via passing id i.e. DELETE request can be done from
POSTMAN/THUNDER CLIENT
router.delete('/:id', (req, res)=>{
 const { id } =req.params;
 users=users.filter((user)=>user.id !==id);
 res.send(`User with the id ${id} deleted from the database`);
});

// PATCH METHOD(PARTIAL MODIFICATION) request via passing id i.e. UPDATE
request can be done from POSTMAN/THUNDER CLIENT
router.patch('/:id', (req, res)=>{
 const { id }=req.params;
 const { firstName, lastName, age } =req.body;

 constuser=users.find((user)=>user.id ===id);

 if (firstName) {
 user.firstName=firstName;
 }
 if (lastName) {
 user.lastName=lastName;
 }
 if (age) {
 user.age=age;
 }

 res.send(`User with the id ${id} has been updated`);

79

});

// Note - PUT method is used to completely overwrite
exportdefaultrouter;

4. Now run the application using node index.js

5. Referring localhost:5000/users to see data that is mentioned in JSON format.

6. The data available is JSON format.

References:

• https://www.tutorialsteacher.com/nodejs/expressjs

80

Learning Outcome
After completing this module, the student should be Able to develop the real time
scenarios based on Node JS applications.

To meet the learning outcome, a student has to complete the following activities

1. Create Restapi & testing rest api postman

81

Activity 1
Aim: Create Rest api & test rest api using postman

Learning outcome: Able to develop the real time scenarios based on Node JS
applications.

Duration: 2 hours

List of Hardware/Software requirements:

1. Laptop/Computer with Windows OS / Linux OS - Ubuntu 18.04 LTS
2. NodeJS, ExpressJS, Joi, Nodemon, Postman software installed

Code/Program/Procedure (with comments):

Step 1: Create a project directory, which will consist of all the files present in the project.
Then, open commands prompt and navigate to the project directory. Refer below.

Step 2: Now, call npm using the below command. This will initialize the npm modules in
your system.

npm init

Once you hit enter, Node.js, will ask you to enter a few details related to the project. These
details will basically be the metadata for your project.

Here you can define your entry point along with several other information. For this demo,
I will be using script.js as an entry point.

82

It will then, ask you for a confirmation for the data you must have mentioned. Just press
on Y to confirm.

Step 3: Next, you have yo install Express.js using the below command:

npm i express

Express is a web framework which can be used along with Node.js. This web framework
will allow you to create Restful APIs, with the help of helper methods, middle layers to
configure your application.

Step 3.1: Similarly, you have to install Joi.

npm i joi

This package allows you to create blueprints for JavaScript objects which store
information to ensure validation of key information.

Step 3.2: Finally, install the node monitoring package nodemon, using the below
command.

npm i -g nodemon

Nodemon, keeps a watch on all the files with any type of extension present in this folder.
Also, with nodemon on the watch, you don’t have to restart the Node.js server each time
any changes are made. Nodemon will implicitly detect the changes and restart the server
for you.

package.json

{
"name": "restapidemo",
"version": "1.0.0",
"description": "Creation of REST API",
"main": "script.js",

83

"scripts": {
"test": "echo \"Error: no test specified\" && exit 1"
},
"author": "sahiti_kappagantula",
"license": "ISC",
"dependencies": {
"express": "^4.17.1",
"joi": "^14.3.1"
}
}

script.js

const express = require('express'); //Import Express
const Joi = require('joi'); //Import Joi
const app = express(); //Create Express Application on the app variable
app.use(express.json()); //used the json file

//Give data to the server
const customers = [
{title: 'George', id: 1},
{title: 'Josh', id: 2},
{title: 'Tyler', id: 3},
{title: 'Alice', id: 4},
{title: 'Candice', id: 5}
]

//Read Request Handlers
// Display the Message when the URL consist of '/'
app.get('/', (req, res) => {
res.send('Welcome to Edurekas REST API!');
});
// Display the List Of Customers when URL consists of api customers
app.get('/api/customers', (req,res)=> {
res.send(customers);

84

});
// Display the Information Of Specific Customer when you mention the id.
app.get('/api/customers/:id', (req, res) => {
const customer = customers.find(c => c.id === parseInt(req.params.id));
//If there is no valid customer ID, then display an error with the following message
if (!customer) res.status(404).send('<h2 style="font-family: Malgun Gothic; color:
darkred;">Ooops... Cant find what you are looking for!</h2>');
res.send(customer);
});

//CREATE Request Handler
//CREATE New Customer Information
app.post('/api/customers', (req, res)=>; {

const { error } = validateCustomer(req.body);
if (error){
res.status(400).send(error.details[0].message)
return;
}
//Increment the customer id
const customer = {
id: customers.length + 1,
title: req.body.title
};
customers.push(customer);
res.send(customer);
});

//Update Request Handler
// Update Existing Customer Information
app.put('/api/customers/:id', (req, res) => {
const customer = customers.find(c=> c.id === parseInt(req.params.id));
if (!customer) res.status(404).send('<h2 style="font-family: Malgun Gothic; color:
darkred;">Not Found!! </h2>');

const { error } = validateCustomer(req.body);

85

if (error){
res.status(400).send(error.details[0].message);
return;
}

customer.title = req.body.title;
res.send(customer);
});

//Delete Request Handler
// Delete Customer Details
app.delete('/api/customers/:id', (req, res) =>; {

const customer = customers.find(c=> c.id === parseInt(req.params.id));
if(!customer) res.status(404).send('<h2 style="font-family: Malgun Gothic; color:
darkred;">Not Found!!</h2>');

const index = customers.indexOf(customer);
customers.splice(index,1);

res.send(customer);
});
//Validate Information
function validateCustomer(customer) {
const schema = {
title: Joi.string().min(3).required()
};
return Joi.validate(customer, schema);

}

//PORT ENVIRONMENT VARIABLE
const port = process.env.PORT || 8080;
app.listen(port, () => console.log(`Listening on port ${port}..`));

86

Step 4: Now, the next step is to check whether the handlers are working properly or not.
For that, we will use a Chrome extension called Postman. To install Postman you can
search for postman in google web store and click on ‘Add to Chrome’.

Step 5: Now, once you have installed Postman, open it to test your application.

Step 6: But before that you have to start your server. To start your server, type the
following command.

node script.js

You would see the output as below:

Output/Results snippet:

Let us start by testing the GET Method.

Step 7: In order to do that you need to select GET from the drop-down list, type in the
defined URL and hit send.

If your code is working fine, then you will see the list of all the customers which we have
added manually in our code. In the below picture, you can see how my result looks like.
Here I have mentioned the URL to be localhost:8080/api/customers

87

Step 8: Now, let’s try adding a new customer to our stack of customers. For that, select
‘POST’ from the drop-down list and type in the defined URL for the POST method. Then,
click on ‘Body’, select ‘raw’ and move on to select ‘JSON’ from the drop-down list as
depicted in the below image. Now, in the text area, type in the name of your customer as
shown and hit send.

If your POST method is working fine, your response body will contain the new customer’s
name along with the Customer ID. Here if you observe, we have only mentioned the name
but we did not give the customer ID. This implies that the Customer ID is automatically
incremented

88

Step 9: Now, let’s try to update a Customer name. Let us say we ant to update the name
of the Customer ID = 3. So, to update the data, you need to first select ‘PUT’ from the
drop-down table and enter the PUT request’s URL along with the customer id you wish
to update. Next in the ‘Body’, type in the new customer name and hit enter.

This will give you a response with the customer id and updated customer name.

Step 10: Finally, let’s send a ‘DELETE’ request to delete an existing record. For that
select DELETE from the drop-down list and type in the URL of the delete request handler
along with the customer’s details, you want to remove and hit enter. Let’s say, I want to
delete the details of a customer with id = 3. If your transaction is successful, you will see
the complete details of the entry you have removed in the response body.

89

Now, let’s send a GET request for our final list of customers.

As you can see from the above screenshot, the response body contains a total of five
customers with the customer id 3 missing as we have already deleted that entry.

References:

• https://www.edureka.co/blog/what-is-rest-api/

90

Learning Outcome

After completing this module, the student should be able to configure an embedded
Mongo DB and Create application with CRUD operation

To meet the learning outcome, a student has to complete the following activities

1. Create application with CRUD operations using Mongo DB (2Hr)
2. Web Application Integration Using Express+Angular+Mongo

91

Activity 1
Aim: Create application with CRUD operations using Mongo DB

Learning outcome: Able to configure embedded Mongo DB application with Node JS

Duration: 2 hours

List of Hardware/Software requirements:

1. Laptop/Computer with Windows 10/11
2. Mongo DB
3. Node JS, Curl

Code/Program/Procedure (with comments):

Node JS and MongoDB CRUD Operations

Method 1

1. Node JS with MongoDB CRUD Operations: MongoDB and Node.js Setup

Your computer should be installed with MongoDB and Node.js and a command-line
with curl command. Download MongoDB MSI package from its official website and run it
to install MongoDB. After the installation, run the mongo command to ensure that
MongoDB is running.

Next, ensure that both MongoDB and npm are installed on your computer. You can
download Node.js from its official website and install it on your computer. Curl will help
you to run HTTP requests on the command line.

2. Node JS with MongoDB CRUD Operations: Create a New Node.js Project

Open the folder where you will create a project and type the following command:

npm init

92

Give the project the name node-mongo and accept defaults for the other settings. Add
the necessary dependencies to the project. Run the following command within the
project directory:

npm install mongodb polka --save

The above command will install the Node.js driver for MongoDB and the Polka HTTP
Server to handle HTTP requests. Add the following start script to the package.json file:

Create a /node-mongo/src/index.js file and add the following contents to it:

const polk= require('polka');
polk()
 .get('/create', (req, res) => {
 res.end(`It works`);
 })
 .listen(3000, err => {
 if (err) throw err;
 console.log(`> localhost:3000`);
 });

Now, run the following command to start the server:

npm run start

Test the server by running the following command:

curl http://localhost:3000/create

3. Node JS with MongoDB CRUD Operations: Inserting a Record into GridDB

We need to perform an insert, which is the C in CRUD. Change your index.js file to the
following:

const polk = require('polka');
const { MongoClient } = require("mongodb");

93

polk()
 .get('/create', (req, res) => {
 const cl = new MongoClient("mongodb://localhost:27017");
 async function run() {
 try {
 await cl.connect();
 const dbs = client.db("intro");
 const coll = dbs.collection("quotes");

 const rest = await coll.insertOne({"quote":"This is my quote."});
 res.end(JSON.stringify(rest));
 } catch (ex) {
 console.log("Error: " + ex);
 } finally {
 await cl.close();
 }
 }
 run().catch(console.dir);
 })
 .listen(3000, err => {
 if (err) throw err;
 console.log(`> localhost:3000`);
 });

The above script is an example of a node js with MongoDB crud operation. It
establishes a connection to a MongoDB instance, selects a database named intro and a
collection named quotes. It then inserts a document into the collection and returns the
results as an HTTP response.

To run the insert, press Ctrl+C to stop and restart the node. Next, run the following
command on the terminal:

npm run startcurl http://localhost:3000/create

94

4. Node JS with MongoDB CRUD Operations: Retrieving from MongoDB

We can use the .get() method to retrieve a document from MongoDB. The following
script demonstrates this:

.get('/retrieve', (req, res) => {
 const cl = new MongoClient("mongodb://localhost:27017");
 async function run() {

 try {
 await cl.connect();
 const dbs= client.db("intro");
 const coll = dbs.collection("quotes");

 const cur = coll.find({}, {});

 let items = [];
 await cur.forEach(function(doc){
 items.push(doc);
 });
 res.end(JSON.stringify(items));
 } catch (err){
 console.warn("ERROR: " + err);
 if (errCallback) errCallback(err);
 } finally {
 await cl.close();
 }
 }
 run().catch(console.dir);
 })

We have used the find command and passed to it an empty query. This means that it
will match all documents in the collection. The response is then returned to the client in
the form of an array.

95

5. Node JS with MongoDB CRUD Operations: Updating MongoDB Documents

In this section, we will demonstrate how to update MongoDB documents, which is the
“U” in CRUD:

.get('/update', (req, res) => {
 const cl = new MongoClient("mongodb://localhost:27017");
 async function run() {
 try {
 await cl.connect();
 const dbs = client.db("intro");
 const coll = dbs.collection("quotes");

 const updateDocument = {
 $set: {
 author:
 "Martin Kings",
 },
 };

 const rst = await coll.updateOne({}, updateDocument, {});
 res.end("Updated: " + rst.modifiedCount);
 } catch (ex) {
 errCallback(ex);
 } finally {
 await cl.close();
 }
 }
 run().catch(console.dir);
 })

In the above node js with MongoDB crud operation, we have connected to the database
and created an updated document. We have then changed the author field to Martin
Kings. The updateOne() function helped us to execute the update. Since we wanted to
match all documents, the filter is empty.

96

6. Node JS and MongoDB CRUD Operations: Deleting MongoDB Documents

The following script demonstrates how to delete a MongoDB document from Node.js:

.get('/delete', (req, res) => {
 const cl = new MongoClient("mongodb://localhost:27017");
 async function run() {
 try {
 await cl.connect();
 const dbs = cl.db("intro");
 const coll = dbs.collection("quotes");
 const qry = { };
 const rst = await coll.deleteOne(qry);
 if (rst.deletedCount === 1) {
 res.end("One document deleted.");
 } else {
 res.end("No document was deleted.");
 }
 } finally {
 await cl.close();
 }
 }

We have used an empty query so as to match all the documents within the collection.
The deleteOne() function tells us the number of documents that have been deleted.

That is how to run node js with MongoDB crud operations.

97

Method 2

MongoDB Installation
Step I: Download the latest version MongoDB server from its official
site: https://www.mongodb.com/download-center/community

Step II: Next click on the ‘Server’ tab as shown in the below screenshot.

Step III: If you are looking for any specific version, you can select it from the drop-down
list or you can just download the latest version.

Step IV: Select your OS from the drop down. Since I am working on Windows I will go for
Windows 64 bit.

Step V: Now, select the package as MSI.

98

Step VI: Finally, click on ‘Download’ to begin the download process.

Step VII: Once downloaded, double click on the MSI file to open it and proceed with the
installation wizard.

Step VIII: Now, in order to start the MongoDB server you have to run the .exe file and
assign the database folder. To make the work easier, all you need to do is write down a
few lines of code in a notepad file and save it with the .bat extension. In other words, you
just need to create a batch file, which will start the MongoDB server for you without any
hassle. To create the batch file type in the below code:

1. cd C:Program FilesMongoDBServer.0in (MongoDB path)
2. mongod.exe --dbpath F:MongoDBdata (database dump destination)

Now, whenever you want to launch the MongoDB server, all you need to do is double
click this batch file and open the MongoDB Compass application.

Step IX: Next, you need to launch the ‘MongoDB Compass’ and agree to its terms of
use.

99

Step X: Now you need to provide the server configurations and hit ‘Connect’.

100

Step XI: Next, click on ‘Create Database’.

Step XII: Now, provide a relevant name for your database and collection and hit ‘Create
Database’.

101

I guess, now you are all set to get started with the practical part, so without any more
delay let’s dive into the code.

Node.js MongoDB Demo

Here I will be creating a CRUD application for Course Management with the help
of Node.js and Express.js and use MongoDB to store the data. In this application, I will
be taking course details like name, id, duration, and fee as inputs. For that, I will be
creating a few view files which will act as an interface. Then in order to handle the data, I
will be needing a controller as well which will help in manipulating the data. Finally, I will
be needing a few model files to store the data. So basically, I will be following an MVC
pattern for this application development. So, lets now jump into development.

Our application will be having the following hierarchy:

• NodejsMongoDbDemo
o package.json
o script.js
o controllers

§ courseController.js
o img

§ logo.jpg
o models

§ course.model.js
§ mongodb.js

o views
§ course

§ courseAddEdit.hbs
§ list.hbs

§ layouts
§ mainLayout.hbs

So, let’s begin the application development by creating a directory for the project. Once
you are done, open the command prompt and navigate to your project directory. Now you
need to set up the project configurations for that, type in the below command and provide
the necessary details:

102

 npm init

Now, you need to install the required packages. So, in this project, I am using the below
packages:

• express.js: It is a web framework.
• express-handlebars: It is a template engine and helps in creating client-side

applications.
• mongoose: Helps in communicating with MongoDB.
• body-parser: Helps in converting the POST data into the request body.
• nodemon: Helps in automatically restarting the server whenever the code

changes.

In order to install these packages, type in the following command:

 npm i --s express express-handlebars mongoose body-parser

Since I want to install nodemon such that it can access any file in the directory, I will be
installing it with the global command:

 npm i -g nodemon

Once you are done installing with the packages, your final JSON file should look like the
below file:

package.json

{

"name": "samplenodemongo",

"version": "1.0.0",

"description": "Edunet demo on how to build a Node.js application with MongoDB",

"main": "script.js",

103

"scripts": {

"test": "echo "Error: no test specified" && exit 1"

},

"author": "Edunet",

"license": "ISC",

"dependencies": {

"body-parser": "^1.19.0",

"express": "^4.16.4",

"express-handlebars": "^3.0.2",

"mongoose": "^5.5.6",

"nodemon": "^1.19.0"

}

}

As you can see, in the dependencies section all the installed packages have been
successfully listed. So, lets now create the database we will be using in this demo. For
that start the batch file and open MongoDB application. Now, create a new database and
provide a collection name. In my application, I will be using ‘EdunetCoursesDB’ as the
database name and ‘courses’ as the collection.

104

Now, switch back to your code editor where we will be creating the files to establish
connectivity between Node.js and MongoDB. For that, first, you need to create a folder
inside the project directory and name it ‘model’. Inside this folder, create a javascript file
with the name ‘mongodb.js‘ and type in the below code:

mongodb.js

const mongoose = require('mongoose');

mongoose.connect('mongodb://localhost:27017/EdunetCoursesDB', {useNewUrlParser:
true}, (err) => {

if (!err) {

console.log('Successfully Established Connection with MongoDB')

}

else {

105

console.log('Failed to Establish Connection with MongoDB with Error: '+ err)

}

});

 //Connecting Node and MongoDB

require('./course.model');

Now, you need to define the schema of your course database. For that, create a new JS
file within the model folder and name it ‘course.model.js‘. So, I am using four fields in
my course object I am using four fields which are name, id, duration, and fee. To create
this file, type in the below-given code.

course.model.js

const mongoose = require('mongoose');

//Attributes of the Course object

var courseSchema = new mongoose.Schema({

courseName: {

type: String,

required: 'This field is required!'

},

courseId: {

type: String

},

courseDuration: {

type: String

106

},

courseFee: {

type: String

}

});

mongoose.model('Course', courseSchema);

Now, you need to create the root file called ‘script.js‘. This file is the entry point of this
application and will contain all the connection paths in it. You need to be really careful
while providing the paths in this file as it might result in an error or application failure.
Along with this, it is also responsible for invoking the server and establish the connection.
In order to create this file, type in the below code:

script.js

require('./models/mongodb');

//Import the necessary packages

const express = require('express');

var app = express();

const path = require('path');

const exphb = require('express-handlebars');

const bodyparser = require('body-parser');

107

const courseController = require('./controllers/courseController');

app.use(bodyparser.urlencoded({

extended: true

}));

//Create a welcome message and direct them to the main page

app.get('/', (req, res) => {

res.send('

<h2 style="font-family: Malgun Gothic; color: midnightblue ">Welcome to Edunet
Node.js MongoDB Tutorial!!</h2>

 Click Here to go to Course Page ');

});

app.use(bodyparser.json());

//Configuring Express middleware for the handlebars

app.set('views', path.join(__dirname, '/views/'));

app.engine('hbs', exphb({ extname: 'hbs', defaultLayout: 'mainLayout', layoutDir:
__dirname + 'views/layouts/' }));

app.set('view engine', 'hbs');

108

//Establish the server connection

//PORT ENVIRONMENT VARIABLE

const port = process.env.PORT || 8080;

app.listen(port, () => console.log(`Listening on port ${port}..`));

 //Set the Controller path which will be responding the user actions

app.use('/course', courseController);

Next, in order to handle the user requests, you need to create the router file. For that first,
create a folder and name it ‘controller’ and within this folder create a file with the name
‘courseController.js‘. In this file, we will be dealing with the CRUD operations related to
the employee. Below is the code for creating this file:

courseController.js

//Import the dependencies

const express = require('express');

const mongoose = require('mongoose');

//Creating a Router

var router = express.Router();

//Link

const Course = mongoose.model('Course');

//Router Controller for READ request

router.get('/',(req, res) => {

res.render("course/courseAddEdit", {

viewTitle: "Insert a New Course for Edunet"

109

});

});

//Router Controller for UPDATE request

router.post('/', (req,res) => {

if (req.body._id == '')

insertIntoMongoDB(req, res);

else

updateIntoMongoDB(req, res);

});

//Creating function to insert data into MongoDB

function insertIntoMongoDB(req,res) {

var course = new Course();

course.courseName = req.body.courseName;

course.courseId = req.body.courseId;

course.courseDuration = req.body.courseDuration;

course.courseFee = req.body.courseFee;

course.save((err, doc) => {

if (!err)

res.redirect('course/list');

else

110

console.log('Error during record insertion : ' + err);

});

}

 //Creating a function to update data in MongoDB

function updateIntoMongoDB(req, res) {

Course.findOneAndUpdate({ _id: req.body._id }, req.body, { new: true }, (err, doc) => {

if (!err) { res.redirect('course/list'); }

else {

if (err.name == 'ValidationError') {

handleValidationError(err, req.body);

res.render("course/courseAddEdit", {

//Retaining value to be displayed in the child view

viewTitle: 'Update Course Details',

employee: req.body

});

}

else

console.log('Error during updating the record: ' + err);

}

});

}

111

//Router to retrieve the complete list of available courses

router.get('/list', (req,res) => {

Course.find((err, docs) => {

if(!err){

res.render("course/list", {

list: docs

});

}

else {

console.log('Failed to retrieve the Course List: '+ err);

}

});

});

//Creating a function to implement input validations

function handleValidationError(err, body) {

for (field in err.errors) {

switch (err.errors[field].path) {

case 'courseName':

body['courseNameError'] = err.errors[field].message;

break;

default:

112

break;

}

}

}

//Router to update a course using it's ID

router.get('/:id', (req, res) => {

Course.findById(req.params.id, (err, doc) => {

if (!err) {

res.render("course/courseAddEdit", {

viewTitle: "Update Course Details",

course: doc

});

}

});

});

//Router Controller for DELETE request

router.get('/delete/:id', (req, res) => {

Course.findByIdAndRemove(req.params.id, (err, doc) => {

if (!err) {

res.redirect('/course/list');

113

}

else { console.log('Failed to Delete Course Details: ' + err); }

});

});

module.exports = router;

Now, that we are done with backend files, the next step is to create the Views. For that
first, you need to create a wrapper for the child views. But before that, create a folder with
name ‘views‘. Inside this folder create two more folders with names ‘course‘ and
‘layouts‘ respectively with .hbs extension. Now, navigate inside the ‘layouts’ folder and
create the wrapper with the name ‘mainLayout.hbs‘. This file will contain the basic
skeleton of the application which will be reflected in the child views as well. In this file, I
am inserting an image as well, so for that I will create a local folder with name img and
save my image inside.

To create this file, type in the below codes:

mainLayout.hbs

<!DOCTYPE html>

<html>

<head>

<title>Edunet Node.js MongoDB Demo</title>

<link rel="stylesheet"
href="https://maxcdn.bootstrapcdn.com/bootstrap/4.0.0/css/bootstrap.min.css"
integrity="sha384-
Gn5384xqQ1aoWXA+058RXPxPg6fy4IWvTNh0E263XmFcJlSAwiGgFAW/dAiS6JXm"
crossorigin="anonymous">

114

<img
src="
BAAEAAAIBRAA7" data-wp-
preserve="%3Cscript%20src%3D%22https%3A%2F%2Fajax.googleapis.com%2Fajax
%2Flibs%2Fjquery%2F3.2.1%2Fjquery.min.js%22%3E%3C%2Fscript%3E" data-mce-
resize="false" data-mce-placeholder="1" class="mce-object" width="20" height="20"
alt="<script>" title="<script>" />

<img
src="
BAAEAAAIBRAA7" data-wp-
preserve="%3Cscript%20src%3D%22https%3A%2F%2Fmaxcdn.bootstrapcdn.com%2
Fbootstrap%2F3.3.7%2Fjs%2Fbootstrap.min.js%22%3E%3C%2Fscript%3E" data-mce-
resize="false" data-mce-placeholder="1" class="mce-object" width="20" height="20"
alt="<script>" title="<script>" />

</head>

 <body class = "bg-info">

<div align="center">

<!-- Inserting the image -->

</div>

<div class="row">

 <div class="col-md-6 offset-md-3" style="background-color: #fff; margin-top: 40px;
padding:20px;">

115

<!-- retrieving HTML String from the child Views -->

{{{body}}}

</div>

 </div>

 </body>

</html>

Finally, inside the course folder, we will be creating two child views, one of which will be
used for course addition or update and the second view will display the complete list of
the available courses. Let’s first focus on the first view i.e courseAddEdit.hbs which will
look like the below screenshot.

So, let me now show, how to build this view.

As you can see in the screenshot, the page will be containing four input fields and two
buttons. One button will be submitting details filled in by the user into the database and
the second button will display the complete list of courses available in the database. In

116

order to make sure that the inputs are correct, you need to add some validations as well.
Once done, you will be able to see this view using ‘/course’ URL. Below is the code, you
will be needing to create courseAddEdit.hbs file:

courseAddEdit.hbs

<!-- Obtaining value from the course controller -->

<h3>{{viewTitle}}</h3>

<form action="/course" method="POST">

<input type="hidden" name="_id" value="{{course._id}}">

<div class = "form-group">

<label>Course Name</label>

<input type="text" maxlength="100" class="form-control" name="courseName"
placeholder="Course Name" value="{{course.courseName}}">

<div class="text-danger">

{{course.courseNameError}}</div>

</div>

<div class = "form-group">

<label>Course ID</label>

<input type="number" min='10000' max='99999' class="form-control" name="courseId"
placeholder="Course Id" value="{{course.courseId}} " required>

</div>

<div class = "form-row">

<div class = "form-group col-md-6">

<label>Course Duration</label>

117

<input type="number" min='10' max='99' class="form-control" name="courseDuration"
placeholder="Course Duration (Hrs)" "{{course.courseDuration}} " required>

</div>

<div class = "form-group col-md-6">

<label>Course Fee</label>

<input type="number" min='100' max="100000" class="form-control" name="courseFee"
placeholder="Course Fee (USD)" "{{course.courseFee}} " required>

</div>

</div>

<div class="form-group">

<button type="submit" class="btn btn-info"><i class="fa fa-database"></i>
Submit</button>

<i class="fa fa-list-alt"></i> View All
Courses

</div>

</form>

Now, let me show you the next view i.e list.hbs, which will retrieve the complete list of
available courses from the database and display them on your screen:

118

In this view, I am using a table to display the list of courses. This table will have five
columns where the first four will display the course details while the last column will enable
you to edit/delete a record directly from the application interface. The controllers of these
functions have been already created in the script.js file. So, the only thing left is to add
the view and in order to do so create a list.hbs file and type in the below-written code.

list.hbs

<div>

<i class="fa fa-plus"></i> Create New

<h3 align="center">Edunet's Course List</h3>

</div>

<table class="table table-striped">

<thead>

<tr>

<th>Course Name</th>

<th>Course Id</th>

119

<th>Course Duration(Hrs)</th>

<th>Course Fee(USD)</th>

<th></th>

</tr>

</thead>

<tbody>

{{#each list}}

<tr align="center">

<td>{{this.courseName}}</td>

<td>{{this.courseId}}</td>

<td>{{this.courseDuration}}</td>

<td>{{this.courseFee}}</td>

<td>

 Edit

<a href="/course/delete/{{this._id}}" onclick="return confirm('Are you sure to delete this
record ?');"> Delete

</td>

</tr>

{{/each}}

</tbody>

</table>

120

This concludes are the coding part, now it’s time to test our application. For that, open the
command prompt and navigate to the project folder or if you are using an IDE open the
terminal and type in the below command to start the server.

nodemon script.js

Now you can launch your application in any browser at http://localhost:8080.

Once you have added your own data, you can go back in MongoDB and check whether
the data has been added there or not. If you refer the below screenshot, you will see all
my data has been successfully added. Which means my MongoDB is connected and
working perfectly with my Node.js API.

Reference:

• https://hevodata.com/learn/node-js-with-mongodb-crud/
• https://www.edureka.co/blog/node-js-mongodb-tutorial/

121

Activity 2
Aim: Web Application Integration Using Express+Angular+Mongo

Learning outcome: Able to develop the real time scenarios based on Node JS applications.

Duration: 2 hours

List of Hardware/Software requirements:

1. Laptop/Computer with Windows OS / Linux OS - Ubuntu 18.04 LTS
2. NodeJS, ExpressJS, AngularJS, MongoDB software installed

Code/Program/Procedure (with comments):

Create Node.js App

First, we create a folder:

$ mkdir nodejs-express-mongodb
$ cd nodejs-express-mongodb

Next, we initialize the Node.js App with a package.json file:

npm init
name: (nodejs-express-mongodb)
version: (1.0.0)
description: Node.js Restful CRUD API with Node.js, Express and MongoDB
entry point: (index.js) server.js
test command:
git repository:
keywords: nodejs, express, mongodb, rest, api
author: bezkoder
license: (ISC)
Is this ok? (yes) yes

122

We need to install necessary modules: express, mongoose and cors.
Run the command:

npm install express mongoose cors –save

Setup Express web server
In the root folder, let’s create a new server.js file:

const express = require("express");
const cors = require("cors");
const app = express();
var corsOptions = {
 origin: "http://localhost:8081"
};
app.use(cors(corsOptions));
// parse requests of content-type - application/json
app.use(bodyParser.json());
// parse requests of content-type - application/x-www-form-urlencoded
app.use(bodyParser.urlencoded({ extended: true }));
// simple route
app.get("/", (req, res) => {
 res.json({ message: "Welcome to bezkoder application." });
});
// set port, listen for requests
const PORT = process.env.PORT || 8080;
app.listen(PORT, () => {
 console.log(`Server is running on port ${PORT}.`);
});

What we do are:
– import express and cors modules:

• Express is for building the Rest apis
• cors provides Express middleware to enable CORS with various options.

– create an Express app, then add body-parser (json and urlencoded) and cors

123

middlewares using app.use() method. Notice that we set origin: http://localhost:8081.
– define a GET route which is simple for test.
– listen on port 8080 for incoming requests.

Now let’s run the app with command: node server.js.
Open your browser with url http://localhost:8080/, you will see:

Configure MongoDB database & Mongoose

In the app folder, we create a separate config folder for configuration with db.config.js
file like this:

module.exports = {
 url: "mongodb://localhost:27017/bezkoder_db"
};

Define Mongoose

We’re gonna define Mongoose model (tutorial.model.js) also in app/models folder in
the next step.

Now create app/models/index.js with the following code:

const dbConfig = require("../config/db.config.js");
const mongoose = require("mongoose");
mongoose.Promise = global.Promise;
const db = {};

124

db.mongoose = mongoose;
db.url = dbConfig.url;
db.tutorials = require("./tutorial.model.js")(mongoose);
module.exports = db;

Call connect() method in server.js:

...
const app = express();
app.use(...);
const db = require("./app/models");
db.mongoose
 .connect(db.url, {
 useNewUrlParser: true,
 useUnifiedTopology: true
 })
 .then(() => {
 console.log("Connected to the database!");
 })
 .catch(err => {
 console.log("Cannot connect to the database!", err);
 process.exit();
 });

Define the Mongoose Model

In models folder, create tutorial.model.js file like this:

module.exports = mongoose => {
 const Tutorial = mongoose.model(
 "tutorial",
 mongoose.Schema(
 {
 title: String,
 description: String,

125

 published: Boolean
 },
 { timestamps: true }
)
);
 return Tutorial;
};

This Mongoose Model represents tutorials collection in MongoDB database. These
fields will be generated automatically for each Tutorial document: _id, title, description,
published, createdAt, updatedAt, __v.

{
 "_id": "5e363b135036a835ac1a7da8",
 "title": "Js Tut#",
 "description": "Description for Tut#",
 "published": true,
 "createdAt": "2020-02-02T02:59:31.198Z",
 "updatedAt": "2020-02-02T02:59:31.198Z",
 "__v": 0
}

If you use this app with a front-end that needs id field instead of _id, you have to
override toJSON method that map default object to a custom object. So the Mongoose
model could be modified as following code:

module.exports = mongoose => {
 var schema = mongoose.Schema(
 {
 title: String,
 description: String,
 published: Boolean
 },
 { timestamps: true }
);
 schema.method("toJSON", function() {

126

 const { __v, _id, ...object } = this.toObject();
 object.id = _id;
 return object;
 });
 const Tutorial = mongoose.model("tutorial", schema);
 return Tutorial;
};
And the result will look like this-

{
 "title": "Js Tut#",
 "description": "Description for Tut#",
 "published": true,
 "createdAt": "2020-02-02T02:59:31.198Z",
 "updatedAt": "2020-02-02T02:59:31.198Z",
 "id": "5e363b135036a835ac1a7da8"
}

After finishing the steps above, we don’t need to write CRUD functions, Mongoose
Model supports all of them:

create a new Tutorial: object.save()
find a Tutorial by id: findById(id)
retrieve all Tutorials: find()
update a Tutorial by id: findByIdAndUpdate(id, data)
remove a Tutorial: findByIdAndRemove(id)
remove all Tutorials: deleteMany()
find all Tutorials by title: find({ title: { $regex: new RegExp(title), $options: “i” } })
These functions will be used in our Controller.

Create the Controller

Inside app/controllers folder, let’s create tutorial.controller.js with these CRUD
functions:

• create

127

• findAll
• findOne
• update
• delete
• deleteAll
• findAllPublished

const db = require("../models");
const Tutorial = db.tutorials;
// Create and Save a new Tutorial
exports.create = (req, res) => {

};
// Retrieve all Tutorials from the database.
exports.findAll = (req, res) => {

};
// Find a single Tutorial with an id
exports.findOne = (req, res) => {

};
// Update a Tutorial by the id in the request
exports.update = (req, res) => {

};
// Delete a Tutorial with the specified id in the request
exports.delete = (req, res) => {

};
// Delete all Tutorials from the database.
exports.deleteAll = (req, res) => {

};
// Find all published Tutorials
exports.findAllPublished = (req, res) => {

128

 };
Run the Node.js Express Server

Run our Node.js application with command: node server.js

Angular 10 Front-end

• The App component is a container with router-outlet. It has navbar that links to

routes paths via routerLink.
• TutorialsList component gets and displays Tutorials.
• Tutorial component has form for editing Tutorial’s details based on :id.
• AddTutorial component has form for submission new Tutorial.
• These Components call TutorialService methods which use Angular HTTPClient

to make HTTP requests and receive responses.

There are 3 components: tutorials-list, tutorial-details, add-tutorial.

• tutorial.service has methods for sending HTTP requests to the Apis.
• app-routing.module.ts defines routes for each component.
• app component contains router view and navigation bar.
• app.module.ts declares Angular components and import necessary modules.

Implementation

Setup Angular 10 Project

Let’s open cmd and use Angular CLI to create a new Angular Project as following
command:

ng new Angular10Crud
? Would you like to add Angular routing? Yes
? Which stylesheet format would you like to use? CSS

We also need to generate some Components and Services:

ng g s services/tutorial

129

ng g c components/add-tutorial
ng g c components/tutorial-details
ng g c components/tutorials-list

Set up App Module

Open app.module.ts and import FormsModule, HttpClientModule:

...
import { FormsModule } from '@angular/forms';
import { HttpClientModule } from '@angular/common/http';
@NgModule({
 declarations: [...],
 imports: [
 ...
 FormsModule,
 HttpClientModule
],
 providers: [],
 bootstrap: [AppComponent]
})
export class AppModule { }

Define Routes for Angular AppRoutingModule

There are 3 main routes:
– /tutorials for tutorials-list component
– /tutorials/:id for tutorial-details component
– /add for add-tutorial component

app-routing.module.ts

import { NgModule } from '@angular/core';
import { Routes, RouterModule } from '@angular/router';
import { TutorialsListComponent } from './components/tutorials-list/tutorials-
list.component';

130

import { TutorialDetailsComponent } from './components/tutorial-details/tutorial-
details.component';
import { AddTutorialComponent } from './components/add-tutorial/add-
tutorial.component';
const routes: Routes = [
 { path: '', redirectTo: 'tutorials', pathMatch: 'full' },
 { path: 'tutorials', component: TutorialsListComponent },
 { path: 'tutorials/:id', component: TutorialDetailsComponent },
 { path: 'add', component: AddTutorialComponent }
];
@NgModule({
 imports: [RouterModule.forRoot(routes)],
 exports: [RouterModule]
})
export class AppRoutingModule { }

Create Data Service

This service will use Angular HTTPClient to send HTTP requests.
You can see that its functions includes CRUD operations and finder method.

services/tutorial.service.ts

import { Injectable } from '@angular/core';
import { HttpClient } from '@angular/common/http';
import { Observable } from 'rxjs';
const baseUrl = 'http://localhost:8080/api/tutorials';
@Injectable({
 providedIn: 'root'
})
export class TutorialService {
 constructor(private http: HttpClient) { }
 getAll(): Observable<any> {
 return this.http.get(baseUrl);
 }
 get(id): Observable<any> {

131

 return this.http.get(`${baseUrl}/${id}`);
 }
 create(data): Observable<any> {
 return this.http.post(baseUrl, data);
 }
 update(id, data): Observable<any> {
 return this.http.put(`${baseUrl}/${id}`, data);
 }
 delete(id): Observable<any> {
 return this.http.delete(`${baseUrl}/${id}`);
 }
 deleteAll(): Observable<any> {
 return this.http.delete(baseUrl);
 }
 findByTitle(title): Observable<any> {
 return this.http.get(`${baseUrl}?title=${title}`);
 }
}

Create Angular Components

As you’ve known before, there are 3 components corresponding to 3 routes defined in
AppRoutingModule.

• Add new Item Component
• List of items Component
• Item details Component

Run the Angular App

You can run this App with command: ng serve --port 8081.
If the process is successful, open Browser with Url: http://localhost:8081/ and check it.

132

Output/Results snippet:

ü Add an object:

ü Retrieve all objects:

133

ü Click on Edit button to update an object:

134

References:

1. https://www.bezkoder.com/angular-mongodb-node-express/

